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The infinite medium inverse problem with an azimuthally dependent plane source leads to integral
moments of the intensity over all space and angle. A new relationship has been derived between the
moments and the coefficients of the expansion of powers of v in terms of the g (v) polynomials which
arise in transport problems without azimuthal symmetry. This relationship has been used to obtain an

improved method for determining the moments.

I. INTRODUCTION

The study of plane -symmetric one-speed neutron
transport, with the anisotropic scattering kernel ex-
pressed in terms of the first (N+ 1) Legendre poly -
nomials of the scattering angle, involves a decomposi-
tion of the azimuthally dependent equations into a set of
(N +1) azimuthally independent equations. For the mth
azimuthal Fourier component of the finite series solu-
tion for the particle field strength, a set of orthogonal
£™(v) polynomials arise. For a historical perspective
it is worth noting that these gj(r) polynomials were
introduced by Chandrasekhar! in his treatment of.the
same transport equation in the theory of radiative ener-
gy transfer. Furthermore, these polynomials are those
required in the solution of the transport equation by the
spherical harmonies technique.?

For an inverse problem the neutron angular flux or
the angular distribution of radiation in the bedy and on
the boundaries may be assumed to be completely known,
and from this the scattering properties of the medium
are desired.® In the simplest inverse transport prob-
lem, corresponding to an infinite medium containing a
localized azimuthally symmetric plane source (i.e.,
the Green’s function problem), a method equivalent to
the “method of moments” has been utilized to extract
the scattering coefficients in terms of spatial and
angular moments of the angular flux throughout the in-
finite medium.*® Such a procedure involves use of a
recursive set of moment equations of increasing com-
plexity; for example, for the nth scattering coefficient
it is necessary to solve a determinant of order
2n+n(n — 1)/2 for n = 1,° Solutions of the azimuthally-
independent inverse problem also have been worked
out for the energy-dependent” and time-dependent
cases.” ’

The inverse problem with an azimuthally asymmetric
source has also been solved, where it has been shown
that a single moment of the azimuth-dependent Green’s
function can be related to a single scattering coeffi-
cient.® Both these moments and those moments for the
azimuth-independent problems are special cases of a
generalized family of moments which may be related to
the anisotropic response of a detector in an anisotropi-
cally scattering medium, as will be shown.

The purpose of this work is to provide a relatively
simple technique for determining these generalized
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moments and to illustrate their use for calculating
even powers of the distance of travel of particles from
the source. As a by-product of the analysis a new
relationship between the moments and the coefficients
of the expansion of powers of v in terms of the g7 (v)
polynomials is derived.

I1l. THE INVERSE PROBLEM WITH AZIMUTHAL
DEPENDENCE

For a plane source in an infinite medium, the radia-
tion intensity (or neutron angular flux) I(7, i, ¢) depends
upon one coordinate (7), on the cosine of the polar
angle with respect to the positive T axis (p) and on the
azimuth (¢). In the absence of all but localized sources,
the equation of transfer may be written as’

(u a%_ + 1)1(7, [T

1 27
=%f du’f do’ pleosdM(T,p’, ¢"), T#0, (1)
1 A
where anisotropic scattering of finite order N is
admitted.
N
p(coss) =Z_% @, P,(cosd), . (2)
and where some absorption is assumed (0 < wy<1). The
prescription for the infinite-medium Green's function

is completed with the conditions that I(7, u, ¢) stays
bounded as 7— +« and that

0%, p, @) =107, p, ) = 3} 0 —p )6(9), -1l<ps<l.
(3)
By an established procedure’-® the ¢ dependence in
Eq. (1) can be eliminated by a finite Fourier expansion
7,0, d)= i)o (2 =8, ™1, p1 —p®)" 2 cosmep +
+I1,7, 1, ), (4)

where 1,(7, i, ¢) is a portion of the uncollided
distribution,

LAT, 1, )= py 6(p = p,) exp(-7/u,)
N
x[ﬁ(d;) - 2—177— Z‘{o (2 - 6,,0) cosm (b] - (5)

The resulting (N + 1) independent transport equations
are
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(ua—iﬂ)l’"(r,u =%f am(u)p™(u, w )M, p').

-1

(6)

Here
N (E=-m)!
P )= ) B0 (I R 57 (), y
m a 2\=-m/2 pm
Pk(“):mpk(”‘):(l - 1) P7(u), (8)

and, for brevity,
dm(p)=(1 - p*)"dy 9

For a monodirectional plane source in an infinite
medium, the function which must be considered is

K7 =27 f_:d'r r"f_tdm(u)p',"(u)["‘(f, w, ms<N,
=0, m>N. (10)

Symmetry considerations*'® reveal that K7 =0 for
(n+1+m) odd and for n <l —m.

From Eq. (6) we derive the identity

satai+1) [ arr 2 [ i, wappn
- “1 (11)
+h, K7 ,=0, [=m,
where
hy=2+1-0w, (12)

Use of the recursion relation for the modified asso-
ciated Legendre polynomial, followed by an integration
by parts, gives

1
@-m+1DKT, .+ U +m)K’;‘_1',,_l:—niK’;",,, 1=m.
(13)

For m =0 Eq. (13) reduces to the recursion equation of
MeCormick and KuScer® once we correct their result

From Eq. (11) and the appropriate source condition,
we find the starting conditions for the sets of equations
are

2ym/2 m

K;O:—(l—hii———go(z:q+ 1). (14)
Equation (14) relates a single moment of the azimuth-
dependent Green’s function to a single # value, and has
been derived previously.® Since Eq. (14) forms a closed
set of equations from which the scattering coefficients
of the medium can be determined in terms of the K
moments, it represents a solution to the inverse prob-
lem. Alternatively, Egs. (13) and (14) may be used to
obtain the scattering coefficients in terms of a different
set of moments.

If the angle of incident radiation from the plane source
is normal to the plane so that y,=1, then all K}  values
for m #0 will vanish as a consequence of the azimuthal
symmetry.

11l. CALCULATION OF THE K"

In developing a scheme to facilitate the calculation of
the KT, it is useful to look at an array ordered by those
I,n, and m for which K7  exist and do not vanish.
Remembering that K7 vanishes for n </ -m, for | <m,
and for (n+ [ —=m) odd, we construct Table I which is
valid for m <N.

For a particular #, the table shows that the non-
vanishing K7  are located in the lower right diagonal

portion of the array. The elements of this lower diago-
nal portion are confined by an uppermost boundary of

_ elements defined by the general term K7, »» forall

p=0and m sN. These “boundary” or “upper diagonal”
elements follow immediately from recursion relation
(13) since in this case the first term of that recursion

relation vanishes, i.e., K7 ., ., =0. Thus
Kom » =00 +2m)/ by )Gy 515 (15)

for a typographical error. from which it follows that K7, , for m <N is
TABLE I, Table of m values for nonvanishing KT, and me <N.
!
T * 6* 5¥% 4% 3* 2% 1= 0*
7 6 5,7 4.8 3,6,7 2,4,6
[ 6* 5% 4% J* 2% 1* o*
6 5 4,6 3,5 2,4,6 1,3,5
5 5% 4% 3* 2% 1* o*
5 4 3,5 2,4 1,3,5 0.2,4
4 4* 3 2% 1* 0* \
4 3 2,4 1,3 0,2,4 1,3
3 J* ok 1* ox2
3 2 1,3 0,2 1.3 0,2
2 2* 1* o*
2 1 0,2 1 0,2 1
1 1* o* 1 0 1 0 1 0
1=0 0* 0 0 0
n=0 1 2 3 4 5 6 7 n
“This means that K%,; vanishes for all m = 0,2 and the asterisk on =0 indicates that the element should be calculated by use of
Eq. (18).
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m ? n{n+2m)
) = (16)

where K7, ; is given by Eq. (14).

The calculation of the remaining nonvanishing K7, in
Table I would be cumbersome with the use of Eqs. (13)
and (14). ® Hence it is desirable to develop an improved
procedure. To do this, it is necessary to introduce the
set of functions which satisfy the recursion relation®®

hygyw)=(k+m)ge,(v)+ (b -m+ gl (v), k>m, (17)
where the starting equation is®
-1
) =ppw) =TI (@n+1). (18)

The g7(v) are polynomials of order (I —m), alternatively
even and odd, and hence may be used in an expansion
such as

M*n

LI Al nh](v (19)

A convement means for calculating the g7'(v) is the
determinant™

gniv)
A= T E-m
hav 1 0 0 N Y
2m+1  h.v 2 0
0 2m+2 b, v 3
X 0 0 3 by 4.
N AN \'\ 0
N ~ N
N N
B+m -2 “Nhyav kh-m-1
0 0 kE+m-1  hy v
(20)

which was derived from Eq. (17) by an inductive proof
and which generalizes a result of Inond® to the case
for m#0. By a straightforward expansion of Eq. (20),
an alternative expression is

g"’(V)~L/G, # (21)
where GT ,=0if (2+7 -m) is odd. Here
G’;‘- S!a -m=2g,k% (22)

G:—m-zs, P ( -

where we define the factors

Jz_r!‘-z.s k-m-~23+2 R-m-2
Sm > NERRE7R =1
Em-2s,k— jf:lo i22=71~2 !s=15_1¢z wnwyg sz! § y
= 1, S = 0, (23)
m-1 ~1 =i}
G';_m‘,,z[nr}a (2n + 1)][11m hJ[(k -m) !] (24)

and where G =1 in order to satisfy Eq. (18). The
coefficient of the lowest power of v in Eq. (21), for
example, is given by

1 3

(h=m=-1 D

Gl =(-1)*™m )/ZGZ‘-m,k Zi le
s

3170 Jg=jye2
t-m-2
X e 25 Wy Wy (25)
Jp=j -1+2 1’2 ?
p=l 12~m-1)/2

if (¢ -=m) is odd, and
Goa=(=1)Fm/2Gn  wawg - w, (28)
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if (¢ —m) is even. In Eqgs. , (25), and (26) the term
w ; is defined as
w; =G+ D@m+j+ D)/ (k). 27)

Equations (22)—(27) reduce to those given by Inonii'2 and
earlier by Mika'® for the case m =0.

In a manner similar to the proof of im')'nii, 2 it may be
shown that the g polynomials satisfy the orthogonality

relations
2(E+m)!

v
'/;F('U—)g;‘(v)g’:(v)dV:m Gnk-’ (28)

where N™(v) denotes the normalization functions defined
in Ref. 9. Here the integral over the eigenvalues spec-
trum o is actually a summation in the Stieltjes sense
over —1<vp <1 and the set of discrete eigenvalues.
From Egs. (19) and (28) it follows that

pm! 2AT (1 +m)!
fN'"w) == 9)
Equation (29) may be used to show that the A7 and the
K7 , are related by
KT, =AT al(+m)!(1 - p2m/?

xn(2p+1 (h (1 =m)! @m+ 1)1 (30)

Equation (30) is verified by using Eq. (17) in Eq. (29)
and then using Eq. (30) to recover Eq. (13), and by then
using Eqgs. (18) and (28) to check that Eq. (29) for l=m
and » =0 reproduces Eq. (14).

To determine the AT  needed to obtain K7, from Eq.
(30), we use Eq. (21) to rewrite Eq. (19) as

iad m {_\m G™ i
V=75 AT 2, GY vl (31)
J=nmt 1=0

Interchanging the orders of summation gives

=2 V' 23 AT G oy (32)
from which we obtain a set of (n+ 1) equations for A7
in terms of G7

I,n2

A:‘*m HG’: nem 1’ (33)
and, for I=0tol=n-1,
L/ Afom,n CT jom =0. (34)

i=1

From Eqs. (33) and (34) it can be shown by inductive
logic that the coefficient AT can be expressed in the
following determinant form, ** where use has been made

of Egs. (22) and (23):
1
AT,
o™= G:‘-?; t=27
2 1 0 0
Sh-a S:-a,:-z 1\\ 0‘\\
\\ \\\ \\\
X N - \\\\ \\‘\
. ~ ~ ‘\0
=~ ~ \\\
~ ~ \\1
~
~
n-2j,¢ n-2j,t-2 S:‘-Zf,f'z(j'l

(35)
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Here j -1 while / has been defined as / =n+ m to sim-
plify the notation.

The calculation of K7 thus requires determination of
A7, from a determinant of order (m +r —1)/2, followed
by use of Eq. (30). To demonstrate the facility with
which K7 can be found using this technique, we display
the result

o _ 40320 1 2 48 64
ONT mARE LRI BInIh, o R HERE O NPhg

72 288 324 576 ]

+ s— + 3 53 36
oy hshy  hyh3hy  R3B hihih, Lol

which [ollows with a fourth-order determinant from Eq.
(35) plus use of Egs. (23), (24), and (27); a determinant
of 14th order would have been required had the proce-
dure using Egs. (13) and (14) been used. ® Equation (36)
also can be obtained from a result of Siewert ef af .’

IV. POSSIBLE INTERPRETATIONS FOR KT,

A family of moments has been defined and determined
which encompasses earlier results as special cases.
These moments are suggestive of applications involving
a general spherical harmonics expansion. The question
remains as to how these additional moments might be
utilized.

A possible use of the generalized moments K7 | is as
a representation of higher-moments of the even powers
of the distance of travel of particles from the source.
That is, if we define

Ky K o= (37)

then (77, is the nth order distance of travel for parti-
cles for the yzth azimuthal component. For example,

(T%,=2/y 1y,

(78, =241/ B3 + 4/h 3 ny),
(1%,,= 6/l hs,

(= T28/K H3+ 80, 3Ry,
(T%,= 10/ hy hy,
(th,=120(5/13 13 + 12/ I, k2 n ).

(38)

Equation (38) demonstrates that the i2th order distance
of travel tends to decrease as m increases, as may be
verified for various special scattering laws.

The additional moments also may be used to incor-
porate the effects of anisotropy of a detector response
when determining the scattering properties of a medium
from experimental measurements with the detector.
From a set of measurements along the T axis, we can
construct the moments

Moo= [T rar [Tae [ D, ), u, 6)dp. (39)
For convenience we postulate that the detector response
function can be expanded in spherical harmonics as

L !
D, ¢)= 25 X5 DT P™(u)cosmo (40)
1=0 m=0
about the same reference azimuthal angle ¢ =0 defined
by the Green's function I(7, u, ¢). Here D" are the

[(L + 1)(L +2)/2] coefficients which are assumed known.
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If D(1, ¢) does not rapidly change with variations in o
and ¢, L will be small (i.e., <2).

When I(7, i1, ¢) in Eq. (39) is replaced by the expan-
sion of Eq. (4), and after use of Eq. (40), it follows
that

L\ U—liN]
M=), 2, DYKY, 41
1=0 m=0
where [0,/ ]| means minimum value of the elements q
and b. Of course, the constraints on nonvanishing K-
moments that > {/ =) and (n+1 —m) be even are still
applicable.

For each » there is a single equation involving at
most (¥ +1) unknown /,’s. To solve for these unknowns,
we must produce the same number of independent equa-
tions as we have unknowns. The proper set of M mea-
surements depends upon the DT for the detector. In the
simplest case, when L > N, then taking the set of equa-
tions with 7 =0 to N suffices provided D=0 for all
/ <N. Other situations may necessitate a more compli-
cated unfolding algorithm.

The reverse use of Eq. (41) may also be envisioned,
where now we wish to characterize the anisotropy of a
detector response from a knowledge of the scattering
properties of the medium. That is, the [(L +1)(L +2)/2|
values of D7 are unknown while the K7 values are
given. To solve for the D} when L <N, the best proce-
dure is to make measurements for a single p and to
then group the results according to whether »n is even
or odd. In this way we obtain two uncoupled sets of
equations,

K,D,=M, (42)
and
K,D,=M,* (43)

Here K, has matrix elements K7 | with » even, M, has
elements M, with n even, and D, has elements D} with
even (! +m). The subscript o is for the odd elements.
Thus the D values are obtained as solutions of the
equations

De = K:’l Mu (44)

D,=K;'M, (45)

unless difficulties arise because of an ill-conditioned
K, orK,

To illustrate the calculational procedure, we take the
elementary case of L=1and N> 1, where

Ko Ko
K,=
0. K,
46
Dk 3(1 - ud)} 2, (46)
2/R2h, 18(1 - ) 2/ Wik,
and
DY M,
D,= ,  M,= s (47)
D! M,
while
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K,=K} =1/, (48)

and

D,=D0%, M,=M,. (49)

In the event that L >N, then the procedure in Egs.
(44) and (45) will not lead to a determination of all the
coefficients, but only to those D7 for which m <N, For
example, for L =1and N=0, Eqs. (48) and (49) are
still valid; but now D! cannot be determined, so Egs.
(46) and (47) become

Kg:Kg,DZZ/IIO (50)
and

D,=08, M,=M,. (51)
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