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Abstract
ON THE INVERSE PROBLEM OF ONE-GROUP TRANSPORT THEORY
WITHOUT AZIMUTHAL SYMMETRY

by James Anthony Ryer Veeder

Chairman of Supervisory Committee:
| Dr. Norman J. McCormick
Professor
Department of Nuclear Engineering

The study of plane-symmetric one-speed neutron transport,
with the anisotropic scattering kernel expressed in terms of
thelfirst {N+1) Legendre polynomials of the scattering angle,
involves a decomposition of the azimuthally-dependent
equations into a set of (N+1) azimuthally-independent
equations. For the mt! azimuthal Fourier component of the
finite series solution of the particle field st:ength, a set
of orthogonal gﬁ(v)-polyncmials arise. Orthogonality and
normalization properties of these gﬂ(v)-polynomials have been
derived and a finite series expansion has been developed.

The inverse problem, corresponding to an infinite medium
with an azimuthally-dependent plane source, has been analyzed
in a néw manner. This generalization leads to integrals over
all space and angle,K?’n, which depend upon the index for
azimuthal dependence. ‘A new relationship has been derived
between the K? and the coefficients of the expansion of

’
povwers of v in terms of the gﬁ(v)-polynomials, i.e. the



coefficients of a gi(v) series expansion.

The relationship between spatial and angular moments and
the expansion coefficients has been used to obtain an improved
method for determining the scattering coefficients of the
medium in terms of these moments. For example, instead of
solving a determinant of order 2N + N(N-1)/2 to obtain K$:2N
for N=1, only a determinant of order N is required.

Use of the KT to interpret a measurement of the

2,n
anisotropic response of a detector is discussed.




I. Introduction

In the theory of neutron transport the general form of
the equation for the conservation of particles is an
'integro-differgntial equation of 7 variables: 3 spatial
variables, 1 energy or speed variable, 2 directional or
angular variables, and 1 time variable. With the suppression
of several of these variables analytical solutions for some
problems can be found in terms of the remaining variables.

This thesis concerns itself with only a single spatial

variable and two angular variables of neutron transport which
arise when considering the case of plane symmetry. That is,

we consider the neutron distribution as a function of

(1) distance from a plane source or boundary, (2) polar angle

of the direction of travel, and (3) azimuthal angle of direction
of travel.

The study of plane-symmetric one-speed neutron transport,
with the anisotropic scattering kermel expressed in terms of
the first (N+1) Legendre polynomials of the scattering angle,
involves a decomposition of the azimuthally-dependent equations
into a set of (N+1) azimuthally-independent equations. For the
mt? azimuthal Fourier component of the finite series solution
for the particle field strength, a set of orthogonal
gﬂ(v)-polyﬁomials arise. For a historical perspective it is
worth noting that these gﬂ(v)-polynomials were introduced by
Chandrasekhar! in his treatment of the same transport equation
in the theory of radiative energy transfer. Furthermore,
these polynomials are those required in the solution of the

transport equation by the spherical harmonics technique.2
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The first task of this thesis is to develop the

orthogonality and normalization properties of the
g:(v)-polynomials and to illustrate the relationship between
those polynomials and the associated Legendre polynomials.

A second objective of this thesis is to extend to the
azimuthally-dependent case a representation for these
polynomials as a finite series expansion. Such a representation
for the case of azimuthal-independence is given by Inonii.>

Normally when analyzing transport problems, one seeks the
neutron angular flux in terms of the properties and geometry
of the medium and the boundary conditions (and initial
conditions if the problem is time-dependent.) Uniqueness
theorems have been proved to guarantee the solution to such
problems.4 For an inverse problem the angular distribution
in the body and on the boundaries may be assumed to be
completely known, and from this the properties of the medium
are desired.”

In the simplest inverse transport problem, corresponding
to an infinite-medium containing a localized azimuthally-
symmetric plane source (i.e. the Green's function problem),

a method equivalent to the'method of moments" has been utilized
to extract‘the scattering coefficients.6’7 Extensions of this

8

work to the energy-dependent problem® and the time-dependent

9 have also been completed. The inverse problem with

problem
an azimuthally asymmetric source has also been solved.7 In all
of these cases, the scattering coefficients are expressed in

terms of spatial and angular moments of the angular flux
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throughout the infinite medium.

The third objective of this thesis is to analyze the
inverse problem with an azimuthally-dependent source in a new
manner. This generalization leads to integrals over all space
and angle which depend upon the index for azimuthal dependence.

A new relationship is derived between these spatial and
angﬁlar moments and the coefficients of the expansion of powers
of v in terms of the gi’(\;)-polyﬂomials, i.e. the coefficients
of a g§(°) series expansion,

The fourth objective of this thesis is ﬁo use this
relationship between spatial and angular moments and the
expansién coefficients to obtain an improved method for
determining the scattering coefficients in terms of these

moments.

The fifth thesis objective is to provide some possible

applications of the spatial and angular moments.



II1. Transport Equation With Azimuthal Dependence

A. A Decoupled Set of (N+1) Equations

For a plane source in an infinite medium, we wish to
solve the transport equation in terms of the distance t, and
the directions u and ¢, where uis the cosine of the polar
angle of the particle velocity with respect to the positive
t-axis and ¢ is the azimuthal angle of the particle velocity.

The homogeneous transport equation may be written as
e+ imugl=; ﬁf[dyjp(cose)ﬂmm (2-1)

For neutron transport I(t,u,¢) is defined to be the expected
number of neutrons in the unit of volume,dst about 1 per unit
d3tr moving in the direction d¢ about ¢ and in du about the polar
angle cos 1y per unit dud¢. Since all the neutrons are
effectively moving with the same speed and since t is measured
in particle mean free paths, I(t,u,¢) is also the neutron
angular flux. Alternatively, for radiant energy transport,
I(t,u,¢) can be viewed as the energy,intensity.1
In the notation of McCormick and Kuilerl® the scattering

function p(cos 8) for anisotropic scattering of finite order N

can be written as

plcos e]=p°(ui)
, m (2-2)
23 o) - 42 cos rip-fi]

m=/



where

P uu) —Z ck o (u .| | (2-3)

m m

B = T Plu= [ 1-1%) “ P M -0

m — lk m)'
Ce = Yk fkvm)l (2-5)
Uk=( 2k+l)c); (2-6)

Here the p?(u) may be considered a modified form of the
associated Legendre polynomials P?(ﬁ), while the values £y
are the expansion coefficients of the scattering kernel. In
particular, fp=1 and f,= 3, the mean cosine of the scattering
angle in the laboratory coordinate system, while c is the mean
number of secondary particles per collision.

The infinite medium Green's function problem is partially

defined by the source condition

Lioug) -1 loug)- 6(11_;:0)64@ (2-7)

and corresponds to a 'pencil" of particles emitted in the
direction u=ugy, ¢=0 everywhere over the surface located at =0.
The prescription of the Green's function is completed with the

boundary conditions

[
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HT,H,¢)—’ 0 , T —too (2-8)

In the solution of Eq. (2-1) we treat the azimuth dependence
of I(t,u,¢) with a finite Fourier expansion in terms of (N+1)

azimuthally-dependent components 1I™(t,u) such that

[15.48)=3 (2~ 6] Trall -2 cosing

(z-9)

*Iu( Tup)

Here the first term on the right hand side of Eq. (2-9) treats
all particles which have undergone at least one collision,
while Iu(t,u,¢) includes only those particles which come
directly from the source without suffering an interaction.

The uncollided distribution of particles Iu(t,u,¢) is
determined by the source and boundary conditions of the problem
and normally can be neglected except within a few mean free
paths of the source. In the case of the infinite medium Green's
function problem, the uncollided distribution can be accounted

for with the equation

[ 1ol

N n n
X[T(018)L2-Gnoll o, ulli-172coslnd]

(2-10)
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The form of Eq. (2-10) is such that the uncollided
distribution automatically satisfies the left-hand-side of
the transport equation (2-1) and when used along with Eq. (2-7)
in the right-hand-side of the transport equation will yield

the source condition for the IM(r,u) as

(2-11)

m m =/
Tlotu) - Tlosul =9 (#-#o)[mio(/-uo)%]

The effect of the collided portion of I(t,u,¢) from
Eq. (2-9) can be analyzed by looking at the right-hand-side of
the transport equation (2-1) where Eq. (2-2) has been used.

Here we have the term

m

—2L L C/m’ [’E:i(oé‘ -57,70) pm(!ia/i') [1- 12 )2{ /-;,[’2)_2”._

XZ(2 %)I(‘ru){/ Mz,, i costrip #lcosing]

After performing the last integration on this term it can

be rearranged to read

mi}?‘%l(/-u'-’Fcos(m@E’f,ém G

On the other hand, substitution of the collided portion of
I (t,u,¢) from Eq. (2-9) into the left-hand side of Eq. (2-1)

yields the term



N n mooy
2 (-6, )l1-u?l coslmgluz+ Ml 7ul -

For there to be equality between the left and right-hand sides
of the transport equation under all circumstances requires
that the expansion coefficients I%(t,u) be determined from

the (N+1) independent transport equations

(3 + ] Tr = Hfmtpe el 212
-1/

m=0 to m=N. Here we have again adopted the shorthand notation

of McCormick and Ku$terl® by defining

-
dmlu)={-u°) du (2-13)
Thus the azimuthally-dependent transport problem with Nth
order anisotropic scattering has been decomposed into (N+1)
azimuthally-independent transport problems given by Eq.(2-12),
with the source condition of Eq.(2-11) and the boundary

conditions

m B
I(nu)—»o ;, T—=121o0 | (2-14)

Only the m=0 equation need be solved if the source condition

is azimuthally symmetric.
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II. B. The Azimuthally-Dependent Set of g-Polynomials

As in the singular eigenfunction method described by

Case and Zweife14, we insert the ansatz

(7= @l exp -1

(2-15)

into Eq.(2-12) in order to separate the variables and find

that

N
(v-u) @™ vut =%—k§OC;" P u) gk”’(z/) (2-16)

where we define gﬁ(v) to be

. / : '
gkm()/)j’p;n{u) @m( Y li)dm(“) (2-17)

. . . m . .
Since the normalization of @ (v,u) is arbitrary for a

homogeneous equation like Eq.(2-16), we may select

/
[ I@"’(w) om i) =1 2-18)

We multiply Eq.(2-16) by p?(u) dm(n) and integrate with

respect to u over (-1,1) to obtain

| B |
'ﬁl PP () @ukt] Imli) + vEZTFE) 90 Gaas)

where we used the orthogonality relation

[ m +m)|
[ka ) Py (u)dm(u)= 2k2+/ ((:-m))l 6kn (2-20)
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After using the recursion relation

upkm(u)z.?k/w {(k*m)ez(u)+{k‘mﬂ)pkﬁ/‘u)]1 k=m (2-21)

in Eq.(2-19), we obtain the gﬁ(v) recursion relation

ARGl hemlGT Wlslmel G k=0, kzm - eany

where hy is defined by the equation

f)k=2k+/-.h_/; (2-23)

We note that in the limit that Ek=0 for all k, Eq. (2-22)
becomes identical to Eq.(2-21).

To have a starting condition for use with the recursion
relation Eq.(2-22) that is consistent with Eq.(2-18) we
definel0 |

m-/ -1
Qx(l/) =p,7:(2/):ﬂ(2n+/) , where rHZTM/) =1/ (2-24)
n=0 n=0
Thus the gﬂ(v) are a generalization of the modified Legendre
polynomials and reduce to pﬁ(p) in the limit that mk+0 for all
k, i.e., when the medium becomes purely absorbing.
For a later purpose of this thesis it is worth noting at
this time that the g?(v)-polyuomials defined by Eqs. (2-22)

and (2-24) may also be expressed in the determinant form
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Av 1 0 0 . 0
em+ H_ v 2 0 .
m+/
g © Amed 3 '
m m 1%
gk (U) = '
[k=m| 0 0 2m3 A VA4 .
. . m+3
\ N N\
\ N W
\ NN
\ \ N\
. kem-2 AV k-mi
. . k+m-=
0 0 ALY

K2-25)

as shown by KuScer and McCormick}!l in their generalization

of the result obtained by Inbnii3

for m=0.

Furthermore,

gg(v) are of order (k-m) and are odd or even as is (k-m)

odd or even.
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II. C. The EigenfunctionSCDm(v,u)

For the singular eigenfunction method, the(zﬂ(v,u) exist
for a continuum of eigenvalues for every value of v on the
real axis between -1 and +1, and for a discrete set of a .
finite number (2M) of eigenvalues (denoted ivl,tvz,...ivM)
outside the real line interval (-1,1).

In following the method and notation of McCormick and
Ku$cerl0 we will call the right-hand-side of Eq. (2-16)

;-gm(v,u) where
m N m~m m
g (W):ch G WPk W) (2-26)
=m

Then from Eq. (2-16) we can write

@m(?/;u) =_224gm(w)/? V. yiu * Am‘V)("VZ)_mé(V‘u) (2-27)

When v is an element of the continuum of eigenvalues on the
real line between -1 and +1, Eq. (2-27) is still a solution
of Eq. (2-16). Integrating Eq. (2-27) and using the

normalization of Eq. (2-18) we see that

\, V)=~ LR q”’(uu)d’”‘“’ 229

For vfe(-1,1) the discrete eigenvalues are determined as

roots of

/\m(tl/j-)=0 where /\ (Z) /= g (zu)dm(u) (2-29)
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For the later purpose of defining the normalization factors
of the eigenfunctions it is useful to know the values of
Am(z) in the complex plane as it approaches the cut (-1,1)
where it is not analytic. We denote by A;(v) the values of

Ap(v) as Im v*Oi, Reve(-1,1). Then

YN | ; m 2"

A l) = AmlV] 25 L TVG (Y, V) [I-ve) (2-30)
Now it is seen that Am(v) can be written

AnlV)= [/\ W)+ (V)] o (2-31)

As proven by Mikal? and shown in Case and Zweifel? the
eigenfunctionsqpm(v,u) form a complete set from which we can
expand any arbitrary function ¥(u) satisfying the Holder
condition on the interval (-1,1). Because of the continuum
of eigenvalues on (-1,1) and the discrete eigenvalues the
infinite series expansion in this case is found to be a
summation in the Stieltjes sense over the discrete and
continuous spectra of eigenvalues. Thus the arbitrary

function ¥(u) may be expanded as
\y(u)=f ATV @My uldv (2-32)
o}

13

using the notation of McCormick and KuScer where this

summation is denoted as

A" @My u)dv A"’(V)cp’"(uu}du{[Amfv)@m( vl s
f f B M) (.u}])
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As discussed by McCormick and Kuscerl0 the eigenfunctions
defined by Eq. (2-16) are orthogonal with "weight function"

u(l-uz)m in the sense that
/

[u Qv @ vi)dmlk] =0, vV’ (2-34)
/

Here v and v/ may be any values taken from the whole spectrum.
By virtue of this orthogonality we see that the expansion

coefficients of Eq. (2-33) may be obtained in the form

A"lv)= Nm(y)[uqo"’(uu)‘if(u)dm(u) (2-35a)
'"(-'fl—m{w f p@eyu Yildmiy) (2-35b)

where the normalization Nm(ivj) for the discrete eigenvalues

is

m(w)f[ m(+y,u)]dm(u) (2-36)

=/

and for the continuum of eigenvalues N (v) is

O e A L S I
=/ =/

In terms of the Am(z) and Am(z) functions, Eqs. (2-28-31),

these normalization conditions may be explicitly written as

P
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2

m -+ Y oagm 3Aml2)
e y1=2 2 gy, ) 3k
Z=).
J
m,2

NT() =y [ﬂg)«r[ﬂ y Qm(gl/; y|l-v7)

v

Y ) ool 1 Y i

(2-38) .

(2-39)
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II. D, Orthogonality of the g?(v)

To find an arthogcnalitf_;fﬂperty of gz(v) we follow by

analogy the approach of Indnd> and expand the function

Wiy = 9‘%& | | (2-40)

Using the recursion relation, Eq. (2-22), and the definition

of g:(v) from Eq. (2-17), Egqs. (2-35a,b) become

Am(l/) = hkNm()j) [2k+1] [(k*’ m)g::,(u} + (k—m+/)g:l,(1/)]

) Uq;?(u) (2-41a)
" [ek+1]NT)
Am(iuj}: +1u:Y (tV/‘) (2-41b)

(2k+/)Nm(iZ§)

where it is evident that we also have used the recursion
relation for the gg(v), Eq. (2-22). Then using Eq. (2-32)
the function defined by Eq. (2-40) can be expanded as

PR _[vgrvl @™ luu) )
P I (2r+INT(Y) W e

If we multiply Eq. (2-42) by (1-u2)mp§(u), integrate with

respect to u over (-1,1) and use Eq. (2-20), the result is

wmll _ V m m

This equation provides a generalization of the results

derived by Inonu for the case m=0.



I11I. The Inverse Problem

A. The Recursive Constants K&
n
?

We found from Eqs. (2-3) and (2-12) that
3 m / N m
(w3 = ol TP o
..I -

In order to calculate the spatial moments discussed in Chapter
I, we multiply Eq. (3-1) by rndtPﬁ(u), for 2z2m, and integrate
with respect to T over {-=,+=) and with respect to dm(u) over

(-1,1) to obtain

00 [ m / | m
[oir (G [ombsg i+ Jomiapl] )
%00 =/ =(

| : (3-2)
/ oo N / m m / Nomi. ! m '
=L lory e rrdmip)el e {uydm(ﬂ)p[ L i)

-0 (EmT =y -1
Using the orthogonality relation Eq. (2-20) and Eqs. (2-5,23),
Eq. (3-2) can.be written as

2 O’TT"—d (;m( lupm m +.,f_’_(_Km=O (=m
dT uu'D(. Vlﬂ (Tiéu) 2“,, (,n J&— (3-3)
/—00 2/

where the constants Kf , are defined as
»

o gl |
Kom=2T|dT T"fdm(#)P?’(#)[m(ﬂ#) L N € )
-00 —/

=0, m=N

Using Eq. (2-21), Eq. (3-3) can be written as
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mf Al dm{“‘ T aafeemlojaefems 00
+ﬁ( Kj:, :O y (Zm

We perform an integration by parts so that Eq. (3-5) becomes

27{/’0’777#)77’] T#{Hm) ATkl (me)PH,(u

(3-5)

UT;+oo

) e

-2rrd7nr”" fo’m I(w[&mp Lu} ((—W/)P(

- >
+f)‘KI,n 0, (=zm
The first term of Eq. (3-6) vanishes by virtue of Eq. (2-14).
Using Eq. (3-4) to express the second term of Eq. (3-6) in

terms of KM , leads to the result
- »

{(-m+i)KZ/m +((+m)K( ﬁ K(n , (=m (3-7)

~lyn—/

For m=0 this reduces to an equation derived by McCormick and
Ku$ler’ once we correct their result for a typographical error.

Because of the particular symmetry of the plane-source

th th

solution, the n spatial moment of the 2,m associated

Legendre component vanishes (i.e. KT =0) for (n+2-m) odd
n

?
14,15 Of course it also vanishes for m>N.

and also for n<(t-m).

In search for a starting condition for the recursion
relation (3-7) for the spatial and angular moments of I™(t,u),
we remember that we have a unit plane source defined by Eq.

(2-11). To incorporate this we return to Eq. (3-3) for i=m,
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n=0, where

00 a / : | A ' .
-~ __ | m Im m m _
21 deT O’?ﬁ#}#@n(#) (Tsl’() om+] m,0 =0 (3-8)
-00 ,./

The only contribution in the evaluation of the integral over
space in Eq. (3-8) comes from the source present at =0 since
from Eq. (2-14), Im(iw,u)=0. Using Eq. (2-11) and the
integral properties of the Dirac delta function, Eq. (3-8)

becomes

2 —
-‘/ uo) 'OTTIUJ’O) 2m+/ ;,777’0 =0 (3-9)

With the use of Eq. (2-24) our starting condition for the

recursion relation (3-7) becomes

m
-usle o 02
Km _| ff:) ‘ “2,”,/) (ﬁi) [2m+i)ll (3-10)
n=0 |

where (2m+1)!! is defined as shown.
Another way of viewing Eq. (3-9) follows if we re-examine

K: 0 using Eq. (3-4) and write it as
’ N

K o= P Tl G-

where Jm(r) is defined as

- ) =2 i mi ") .
~
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Then Egqs. (3-9,10) may be written as

Am n

om+/ de( |= (/'Iig)e | (3-12)

On the other hand, J (z) from Eq. (3-11) can be written as

Tl 7] f¢ C!#I("# —2_1 | 7,1,0)cos|mp) (3-13)

as may be verified from Egs. (2-9,-10) and the use of the
orthogonality relation for the cosine functions. Equations
(3-12,-13) are results obtained earlier by McCormick and
KuSter’.

It is evident from Eq. (3-9) that if the angle of
jncident radiation from the plane source is normal to the
plane, so that u_=1, then Km,O and likewise all other K?,n
values for m#0, will vanish. This is a consequence of the

fact that a source emitting particles in the normal direction

is azimuthally symmetric.
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III. B. An Expansion in Terms of g?gzl

In the expansion of

’77n+n m m
v =(=ZmAlm g, Wl (3-14)

we will show how the expansion coefficients AT are related
’

to the K? o of section III.A. We multiply Eq. (3-14) by
»
-mx— g M(y)dv and integrate over the entire spectrum to obtain

N"(v)7)

Un+/ = 2 Alnlt+m!
ﬁ‘ (l—m)l (3-15)

where we have used Eq. (2-43). If we now assume, subject to

later verification, that
-/

nlfﬂ
f I g{”(y)d Y =2Kl:’;(2m+/}1 [”!("L‘Z)zﬂ(gpw)?] 5169
p=0

we may use the recursion relation (2-22) for vg?(v) so that

Eq. (3-16) becomes

“m) +(-m+)
f e 1 19

h

-/ (3-17)

...efq";(zm/u[nu/-ui? [T lep+i[]
, p=0

With use of Eq. (3-16) we obtain

m » m f'( m
(K ey =M 10Ky = K (s-17)
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and thus we find that Eq. (3-16) preserves the recursion
relation (3-7) for K?,n' To verify that Eq. (3-16) reproduces
the correct value of K?,n’ however, it is also necessary to

check that Eq. (3-16) preserves the starting condition (3-9)

for 2=m, n=0. For this case Eq. (3-16) is

‘/C;);\’?n;r’;;%’du 2Km 0{2 m+/’ [( “#o) TT(?.DH) ] {3-.?18)

From Eq. (2-24) we know g (v) to be a constant. We may then
re-write Eq. (3-18) by multiplying the left-hand- s7de by
gg(v) while dividing the same side by the term l;jr(2n+1).
Then using the orthogonality Eq. (2-43) we can re-write Eq.
‘(3-18) in the form
m o7

2(2m[A mten+/)] =2K]" (em/)*[v—uo) 20+ ]

P=0

From this we see that

m ,
o T ep+i)ii- uo}’

m,0 F (3-19)
m

which is identically the starting condition (3-9). Hence the
validity of Eq. (3-16) has been verified.
In conclusion, from Eqs. (3-15,-16) it may be seen that

Kt n.and A? n,zare related by the equation
? s’

m
>.m 2 7/
Kin =A gy Tl =) mzp +) [ﬁl(‘-mm? ’"*’)ﬂ (3-20)

In the following section we will utilize the determinant



IV. Calculation of the K? n Moments
N 2

The Ki’ moments, or alternatively the A?;n factors, may
be calculated by an extensive but straightforward application
of the recursion relation (3-7).7’g The difficulty with this
approach, for example, is that determinants of the order of
2N+N(N-1)/2 are required to obtain the moments KK,ZN for

N=1. This prccedure-can be somewhat simplified by another
approach which will now be developed.

From the properties of the gz-polynomials we find that

g?(v), for k=m, can be written as an expression in powers of v

k—-m

g v) =z G 7 (4-1)
(=0

where G?,k=0 if (k+2-m) is odd. Expanding determinant (2-25)

we find a general expression for the coefficient G?,k to be

m m m
k-m-2s 4k —(-l) Gk—m’ k Skfm—2s, 4 (4-2)

where we define the factors

k-m2s k-m-25+2 k-m-2
m - W, W. , w .s=/
Sk-m—zs,k‘ Z Z °t Z Rt s

=1 ,s=0

m- _ -
Grme e [T T
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-/

and where Gg 0—1 since T [=/ in order to satisfy Eq. (4-1).
n=0

The coefficient of the lowest power of v, hcwever does not

satisfy Eq. (4-2) but is given by

k=2

(‘/) Z Z ZWW!.:W if (k-m) (4-5)
km k /5 Jp" is odd |

§=0 jFjp2 55

P={k-m-/)
(k=) /2
2 _.m
("I) Gk- m,k%%% 20 a%._m.e , 1f (k-m) is even. (4-6)
In Eqs. (4-3,-5,-6) the term Wj is defined as
Jj+l)[2m+j+ 4-7
wi={j+)| )/ o B (4-7)

Equations (4-2,-3,-5,-6) generalize an expression given by
Inonud and earlier by Mikal? for the case m=0.

~We may use Eq. (4-1) to re-write Eq. (3-14) as

=N AT ZG[". ! (4-8)
l=m (=

Interchanging the orders of summation in Eq. (4-8) gives

U Z Z j+m n /+m (4-9)

from which we obtain a set of (n+l) equations for AT,n in

m
terms of Gz,n’



25

m m =/ |
An+m,n6n§n+m T (4-10)

n
m m
j{:’qf+ﬂhn<;bj+ﬂf:0 for 2=0 to 2=n-1 (4-11)
J=L

and again we recall from Eq. (4-1) that G™ . = 0 if
2,)J*m
(j+m)+2+m, or equivalently if (j+2) is odd.
In the appendix, Egqs. (4-10,-11) are used to prove that

A? can be written in the following determinant form for j=1,

b 4

where t is defined as t=n+m,

/
m
Aso; n= A
m m
Spat Onzt2 O ‘ : 0

m m cm e
5. n-4.¢ Sn‘4,1-2 ~ N4 t-4

0 (4-12)

m m m ,,
Smot Snawe * 0 Sweip-2li-i
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The calculation of A? n thus becomes a task of solution of a
3

determinant of order {m+n-2)/2. Equation {(3-20) relates

A?,n to K?’n so that Eq. (4-12) can be used to calculate

m
KD -

we must solve a determinant of order N, which is considerably

In the particular case of calculating KE IN? for NZ1,

less than 2N+N(N-1)/2 as suggested by McCormick and Ku¥Zer.’

Equafions (3-20) and (4-12) can be used to duplicate
the results of McCormick and Ku§59r7 for Kg’z, K8,4, and
K8,6‘ To demonstrate the facility with which K?,n can be
found using this new technique we will find Kg,S' By

Eq. (3-20),

0 _ .20 |
Kp,g=8 Ao,g/ﬁo (4-13)

and from Eq. (4-12),

0 0
98 Seg O 0
0 0 0
54,8 Sa,6 Sa,4 O
A0 .1
0,8 g0 |g0 g0 g0 g0 (4-14)
0,0 |52,8 Sz2,6 52,4 52,2
0 0 0 0
50,8 So,6 So0,4 So,2

With the use of Eqs. (4-2,-3,-4) to determine the G and S

elements of Eq. (4-14), we find the value of
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K9 . 30,320 1 . 12 . 48 . 64
0,8 12h2 | hdh: - hohih,  hohihZ  hihs |
(4-15)
72 . 288 . 324 , 576
2 3 3 2 2 2
hohihshs hihshj hohg haohshy

In developing a scheme to facilitate the calculation of
other K? n it is useful to look at an array ordered by those

9

. m . . .
£,n, and m for which K1 exist and do not vanish. Noting
?

that KT vanishes for n<t-m, for f£<m, and for (n+2-m) odd,
we cons;ruct the array in Table I which is valid for m=N.

~ For a particular m, the table shows that the non-vanishing
Kf,n are confined to a lower right diagonal portion of the
array. The elements of this lower diagomnal portion are
confined by an uppermost boundary of elements defined by the
general term K$+p,p' for all non-negative integer p. These
"boundary" or "upper diagonal" elements cannot be calculated
by the technique described in this section for the obvious
reason that Eq. (4-12) is not defined for j=0. The
calculation of these boundary elements, howéver, is a matter
of using the recursion relation (3-7) which in this case is a
simple two term recursion relation because K$+p41,p-1'0 for
the reasons of symmetry, as explained in Section III.A. This

recursion relation is

m = p(p*zm) m
p+m,p — p+m-1,p-1

Bpem

(4-16)
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\
{
7|7+ 6* s¢ | 4 3% 2% 1% 0*
7 6 5,7 | 4,6 |3,5,72,4,6
6* 5% 4% | 3% 2% ;A 1% o*
6 6 5 4,6 3,5 [2,4,6|1,3,5
5|5* 4* 3% 2% 1* | 0%
5 4 3,5 12,4 [1,3,5(0,2,4
4|4t 3% 2% 1% 0* |
4 3 2,4 | 1,3 |0,2,4| 1,3
3|3 > 3 ( 4 0,2 | 1,3 | 0,2
3 2 1,3 ’ b ’
N/
2| 2% 1* 0*
2 1 0,2 1 0,2 1
I 1s 0% / | o 1 0 1 0
/
(=0
0* 0 : 0 0 n
L

n=0 / 2 3 4 S & /7

This means that K?’3 vanishes for all m # 0,2
and the asterisk indicates that for m = 0 the

element cannot be calculated by use of Eq. (4-12).

TABLE I. TABLE OF m-VALUES FOR NON-VANISHING K? n AND m=<N
’
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From this and Eq. (3-9) we see that the general "boundary"

term X% for m<N can be written as
+m,p
p
'%- 242nm+
=(1-u3) (2m+1)§§ I ! 3————~—J§n° : (4-17)
m+p,Pp h
n____.o n+m

where it is evident that use has been made of starting
condition (3-9).
As an example of the utility of Eq. (4-17) it is readily

shown that the "uppermost diagonal" K?,n elements for 2,n,m<4=N

are
1
—
0 2
€3 4r1/m0 om0 /iy
0 | t
K1,1=1/hoh1 = 3(up;1)/h,
kK9 _=4/h h,h kKl .= 9(u,;1)/hh
2,2 0 1%2 . 2,1 L% 1112
k9 .=36/h,hyhoh kKl = 7200 h
3,3 ohihahs 3,27 7 (up;1)/hyhahg
¥% ,=576/hohyhohsh k% .= 1080(y.:1)/h.h.h h
4’4 giijnz L 4’3 (uo, )/ 17273
KX —15(u,:2)/h K3 =105(ug;3)/h, K° .=945(u,;4)/h
2,0 0> 2 3,0 Yo 3 4,0 ups 4
K2 .=75(ug;2)/h,h K> . =735(ug;3)/hsh
3,1 Yoo 253 4,1 Hos 30y,
K% _=900(u, ;2
2 7900(ug32) /hphshy

+ . . .
As a notational and typographical convenience we define

n
(u3m) = (1-u5)2 .
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s m
The remaining X
L,n

directly from Egs. (3-20) and (4-12) to be

values for 2=4 and n<4 were calculated

for m=0=N
0 2 0 3 2 2 2
Ky ,=2/hoh, Ky 4=24(1/hghy+4/hghih,)
0 2 2 2
0 2 2 2 2.
K)_ 4=48(1/hohihz+4/hohih2+9/hohyhahy)
for m=1=N
K} ,=18(u031)/h;hy K} 4=72(4q31) (9/h1hp+64/h k)
1 2 2 2

1 2 2 2 2 2
K3 4=36(u°;1)(S/hlhzh3+8/h1h2h3+15/h1h2h3h“)

for m=2=N

2 2 2 3 2 2 2
K2’2=150(u0;2)/h2h3 K2’4=1080(u0;2)(3/h2h3+8/h2h3hk)

Kz . 2 2 2
3,3=50(uo 32) (12/h2h3h.’*5/h2h3)

2 2 2 2 2
44710800 (u032) (3/hyh3h,+8/h hsh, +15/hohshy,hy)

for m=3 EN

3 2 3 3 2 2 2
K3 2=1470(ug;3)/hjh, K3 482520(u0;3)(49/h3hu+112/h3h“h5)
]

3,2

3 2 2 2
K4,3=4410(u0;3)(7/h3hqf16/h3huhs)

for m=4 =N

4

3.2 2 2
4 4=22680(ug;4) (81/h,h5+180/h,hshe)
»

2
2,2717010Cug34) /hyhy K
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V. Conclusions

This thesis has been devoted to the correlation of
scattering coefficients to measured moments of the angular
intensity in an infinite medium arising from a plane parallel,
non-azimuthally symmetric incident source of radiation. It
has been found that there is more than one means whereby the

16 and by

coefficients can be determined. As shown by Case
McCormick and Ku%Eer7, for an azimuthally-symmetric source
the scattering coefficients follow from increasingly-more-
complicated equations involving lower-order meéasured moments;

an example of this is seen in Eq. (3-7). In an effort to

7

circumvent this difficulty, McCormick and Ku$¢er’ also showed

that there was a very direct relationéhip of a single moment
to a single scattering coefficient, as seen in Eq. (3-12).

The difficulty with this appfoach, however, is that the moment
is an awkward one to imagine using in any experimental
measurement.

In this thesis a family of other moments has been defined
and determined which encompass as special cases all earlier
results. These moments are suggestive of applications
involving a general spherical harmonics expansion. The
question remains as to how these additional moments might be
utilize& in a useful way.

The first possible use of the generalized moments KT,n’
for m=0 and 2£+#m if n=0, is as a representation of higher-

moments of the even-powers of the distance of travel of

particles from the source. That is, if we define
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;<%1n

-, =
‘}(th ‘

then <-rn>m is the nth order distance of travel for particles

for the mth

azimuthal component.

A second possible use of the additional moments developed
here is to incorporate the effects of anisotropy of a detector
response when determining the scattering properties of a
medium from experimental measurements with the detector. We
first postulate that a detector response function can be

expanded in spherical harmonics about a reference orientation

with symmetry as

Dlud)- }j DRSO pcosimdIE ]

=/

where Dl,m are the (L+1)(L#2)/2 coefficients which are assumed
known. We expect that L will be small (i.e. 2 or 3) if

D(u,¢) does not rapidly change with variations in u and 4.
Then, from a set of measurements approximating a continuous

set along the t-axis, we can construct a set of moments
00 2T -1 » |
M, <[ o[ o DIk 7)ok -,
—00 0 =i

Here Mn is the detector reaction rate integrated over ™dt on
(-»,=), where the infinite-medium Green's function I(t,u,¢)
is defined for the incident plane source radiation emitting

in the direction U=y, and with the same reference azimuthal
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angle 4=0 as defined by the detector orientation.

A problem arises with the use of definition (5-3),
however, because of the uncollided distribution at u=u,. We
circumvent this difficulty by temporarily assuming that the
uncollided beam can be neglected. Then I(t,u,$¢) in Eq. (5-3)
is replaced by the collided distribution of Eq. (2-9),

[Imud)-1 (rugl= }: (2-5 I(T,u){/ i )%os(pgb) (5-4)

Using Eqs. (2-4) and (3-4) and the orthogonality properties

of the sine and cosine functions, Eq. (5-3) can be written

[Ln] [L.n47] [,n] _ |
MTEZDB’OKgn ‘*z Z ngmKE’n (5-5)
£=0 £=| m=g-n=/

where [a,b] means minimum value of the elements a, b.

The 1imits of summation of Eq. (5-5) follow from the
trigonometric orthogonality properties and from the constraint
on non-vanishing K-moments that n>(t-m).

For each n there is a single équation‘involving at most
(N+1) unknown hz's. To solve for these unknowns we must
produce the same number of independent equations as we have
unknowns. The proper set of Mn measurements depends upon the
D"’m for the detector. 1In the simplest case, when L>N, then
taking the set of equations with n=0 to N suffices provided

D, ,#0 for all 2<N. Other situations may necessitate a more

L,0
complicated unfolding algorithm.
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A third possible use of the additional moments is to
determine the unknown expansion coefficients Dy p which
characterize the anisotropy of a detector response from a
knowledge of the scattering properties of the medium.
Equations (5-2) through (5-5) are still valid, except now the
EL+1)(L+2)/4 Dz 's are unknown while the K™ values are

,Mm £,n
known. Hence to solve for the Dz 's we must produce the

m
same number of independent Egs. (g-S) to match the number of
unknown Dz,m's. This can be done either by taking different
n coefficients on one set of fixed Moo Mn for 0<n<L and
constant u,;, or by making measurements at different ¥y angles,
or a combination of both procedures. Of course from an
experimental point of view, it is preferable to minimize the
number of different u, measurements.

To solve for the Dz’m's when L<N, the best procedure is
to make measurements for a single u, and to then group the
results according to whether n is even or odd. In this way

we obtain two uncoupled sets of equations,

Ke Do =M (5-6)

and | |

,’So Qo = Mo (5-7)
i |

L,n
matrix elements with n odd. Likewise, the vectorﬂl}_@e has

Here _lge has matrix elements K with n even, and éo has

elements Mn with n even, while__b{l_o has odd-n elements.

Similarly,‘ge has elements D with even (2+m) and,,p_,o has

L,m
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odd- (t+m) elements. Thus, the D values are obtained as
L,m
solutions of the equations

— !
Qe“ ,IS@ Me (5-8)
-/
Do= Ko Mo | (5-9)

To illustrate the calculational procedure we consider

the case of L=3 where

[~ o
2 3
Koo O Ky,o 0O Ko o K30
1 1 3
Ko,z K2 2 Ky)2 K3 2 X222 K3 2
° 2
Ko K2 » Ki K3 & K2 4 K3 &
Ke = ? 3 ? ’ ? ’ (5 10)
P -
x° K K} x} x> K3
0,5 2.6 16 3,6 2.6 36
0 1 1 2 3
Ko’s Kz,s Kz,s Ks,a Kz’a KB’B
0 0 1 1 2 3
Ko’xo Kz’xo K1,1o Ka,xo K2’10 Ka,xo
nd — p— —
DO ] Mo
D
2.0 M2
D
1,1 M,
2e = | p M - (5-11)
3,1 M,
Dz,z M8
D
3 3 M
L 9 - L lo—




0 0 1
Kl 1 Ks’l XZ ’1 K3,1
?
1
Ky 5 Xg 3 X2 3 K33
X - DA ’ ’ (5-12)
0 0 1
Y5 K5 K5 Kaps
0 0 1
K, 4 K3’7 Kz 7 K37
- =
™~ -y r -
Dl,o M,
D M
D = | ° Moo= | (5-13)
o ~0
Dz,l Mg
Da’z M,

In the event that L>N, then the procedure in Eds. (5-8)
and (5-9) will not lend to a determination of all the
coefficients, but only to those Dz,m for which m<N. For
example, for L=3 and N=2, Eqs. (5-12) and (5-13) are stili
valid, but now D3,3 cannot be determined so Eqs. (5-10) and

(5-11) become

~ -
0 1 2
Koo O Ky , O Ky o
’ 9 9’
K’ x° K} K} K2
0 2 2 2 1 2 3 2 2 2
9 ] ?» ? ’
) 0 1 1 2
Xe= | X K Ko X3 K (5-14)
_~ ] ] ’ ? [
0 0 1 1 2
Koe Ky Kig Kyg Kyjg
] ] ’ }
0 0 1 1 2
Kog K, g K g K35 Ky
- ? 9’ ? ] 9 .
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Dy 0 Mu
DZ 0 MZ
]
Be= | D1 Me = | M, (5-15)
D3 1 MS
?»
DZ 2 Mﬁ
»

The only remaining concern in the evaluation of the D,,',m
is the possible effect of the uncollided distribution upon the
measurements, A possible procedure would be to make the
measurements and perform the analyses in Egs. (5-8) and (5-9)
for'two different values of u, and to tﬂen attempt to extract
the effects of the uncollided distribution from the
differences in the values of the Dz,m' Such an approach would

be extremely difficult to execute in practice, however.
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Appendix. A Proof of Equation (4-12) by Inductive Logic
If for the purpose of reducing the amount of index

notation we define t as t=n+m, then for 2=n-2j, j21, Eq.

(4-11) can be written as

m = : m . mn . .
At-25.n [At-zu-l),ncn-zn,t-zu-l)
(A1)

m m m m
*At.2(5-1),n%n-25,t-2(j-2) *""*At,ncn-Zj,t} .

From Eq. (3-20) we see that the non-vanishing A?,n have the

same index restrictions as do the KT,n' For K? AL saw that
9

non-vanishing X requires that (¢+n-m) be even. Noting that
there is no loss of generality in letting £=(n+m-Q)=(t-Q),
where Q is a positive integer, we see that for AQ-Q,n to not
vanish we require (t-Q+n-m), or eqﬁivalentlx Q to be even. For

the case Q=0, A?_Q n can be readily determined from Egs.

(4-10) and (4-4), in that order. A general expression for all
remaining non-vanishing A?-Q,n is A?—Zj,n’ j>1.
We postulate that for any positive integer j, that

m

At-Zj n €an be expressed in the following determinant form
?
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t-2j,n = J Gp-2i,t-2i '
l ] ' (A2)
i=0 | -
GR-2,t GR-2,t-2 0 . . . 0
GR-4,t ©CR-4,t-2 CR-4,t-4 e
Py *
[ ]
0
® )
Gm
. n-2(j-1),t-2(j-1)
m
Gn-2j,t On-2j,t-2 . © Gn.2j,-2(j-1)

For j=1, Eq. (A2) gives A§_23n=-cg_2,tﬂpﬁ,tcg_z,t_ﬂ. With the
use of Eq. (4-10), we see that Eq. (Al) duplicates this result.
Eq. (A2) is thus verified for the case j=1.
Assuming that Eq. (A2) is valid for any j=1, we will
show that it is valid for the next term, j+1. This will
complete the inductive proof of Eq. (A2). '
Again letting t=n+m, then for 2=n-2(j+1), Eq. (4-11) can

be written

AR -1 " m cm
t-2(j+1),n" — |At-2j,nCn-2(+1),t-2j
Gn-2(j+1),t-2(j+1)
(A3)
+ AT G 4.4 A g™
t-2(j-1),n n-2(j+1),t-2(j-1) t,n n-2(j+1),t

Assuming the validity of Eq. (A2) we wish to show that

Eq. (A3) can be written in the following determinant form:
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j+1
I TR = 5 K
t-2(j+1),n  J«_ Gm
n-2i,t-2i
(=0 (A4)
m m
Cn-2,t 6p-2,t-2 ° - - 0
m m n .
Cn-4,1 Gn-4,t-2  Cn-a,¢-2 O
L ]
. | 0
L ]
m
. Cn-25,t-2j
m m s L] s MM . .
Gn‘2(5+1),tcn‘2(j*1),t=2 Cn-2(j+1),t-2j

Using Eq. (A2), by determinant reduction the right-hand-side

of Eq. (A4) becomes

' J
- j‘"l - j m m m . .
‘%Q%) m (-1) At-25,nCn-2(j+1),t-2j I | Gn-2i,t-2i
n-2i,t-2i - =0 (AS)
i=0 -
m m . 0
Cn-2,1t Gh-2,t-2 ° 0 ‘
m m m 0 s ] 0
HGn-4,t Gn-4,t-2 Gn-4,t—4
]
. [ ]
m N *
“Gp-2j,t-2j . ]
. 0
[ ]
m m m
Gn-2(j-1),t%n-2¢j-1),t-2 * * Cn-2¢5-1),t-2(-1)
m m m .
Gp-2(j+1),t0n-2(G+1),t-2  * ¢ Cn-2(j+1),t-2(5-1)
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Similarly, term (AS5) becomes

-A?-Zj,ncﬁ-z(j+1),t-23
m
Gp-2(j+1),t-2(j+1)

(A6)

-1t j-1.m n
- R . 3-
- n=2j,t-23 |(-1) Gn-z(j+1),t-Z(j-l)At-Z(j-l),n

+1 m
i [ Gn-2i,t-2i
i=0

X6n-2i,t-21

-Gt .
n-2(j-1),t-2(j-1)

m m
Gn-2,t Gn-2,t-2 0 0 o ¢ 0
m m m
Gn-4,t Gp-4,t-2 Gn-4,t-4 0 ¢ °* O
[ ]
¢ 0
]
[ ]
[ ] [ ]
[
e .. 0
m m m
6n-2(j-2),t%n-2(j-2),t-2 * * Gn-2(j-2),t-2(j-2)
m m m
Gn-2(j+1),t0n-2(j+1),t-2 * * Gn-2(j+1),t-2(j-2)
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Each successive determinant reduction eliminates the entire
last column and the entire next to the last row of the
determinant until, as evident with complete-reduction, the

last remaining term is

Gr-2(j+1),t
- o (A7)
n,t n-2(j+1),t-2(j+1)

1 m
Using Eq. (4-9) to recognize that ——=A we see that term

m t,n

(A7) is the final term of Eq. (A3).n’t By inspection it is
evident that there is one-to-one correspondence between the
preceding terms in this reduction and those terms of Eq. (A3).
We éoﬁclude that the determinant equatién (A4) in its
reduction duplicates Eq. (A3).

This completes the proof of Eq. (A2) for j=1.

Going from Eq. (A2) to Eq. (4-12) is an easy task of

recognizing that each term of the determinant of Eq. (A2) can

be factored as shown by Eq. (4-2),

m s.m m
Gy-m-2s,k=(-1) G n,kSk-m-2s,k , (A8)

Further, it can be seen that each term of a given column has

a common factor, that factor being Gg,t for the first column,
m

G:-Z,t-z for the second column,... to G, _5(5-1),t-2(j-1) for

the last column. By scalar division of a determinant the

product series is thus eliminated except for the remaining

e
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-1
factor of (G§-25,1-253 .

The determinant of Eq. (A2) can be

Tecognized by Eq. (4-2) as either positive or negative as j

is even or odd. Thus the sign cancellation of (-l)j(-l)J in

Eq. (A2) produces the positive factor of Eq. (4-12), so

m =
A¢-2j5,n

sp.2,t Sh-2,t-20 O

Sn-4,t Sn-4,n-2 Sn-4,n-40

m
Gn-2j,t-2j .

Sn-2j,t Sn-2j,t-2

(A9)
(4-12)

0
" SBo2(5-1),t-2(5-1)

SB-2j,t-2(j-1)
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